State of the (IoT) Union 2022: Smart Home Year in Review

Hello again! It’s almost the end of the year, and I think it’s a good moment once again to run through the various smart home things I shared and how they’ve panned out after the post were published.

A pot noodle surrounded by tools including a soldering iron, wire cutters and a multi meater.

Bathroom Fan

Last year, I shared how had used a Shelly Relay, Home assistant and some humidity sensors to add some smarts to my bathroom fan. Since then, the system has been running un-modified and I am very impressed with its reliability. The only issue I’ve encountered is that as the fan switches on, sometimes the relay will reboot, and the fan would stop again. It was very irritating. This is caused because the fan cam sometimes causes electromagnetic interference as it starts and can be fixed with the installation of an RC snubber.

Smart Heating

One of the first things I wrote about here was how I built a smart heating system without damaging my property. Last year I mentioned that I was going to upgrade the system to also use Shelly relays.

I did, indeed, complete this project but didn’t really write about it. I’m really pleased with this upgrade, as it allows me to switch on an off individual heaters, rather than the entire properly at once. I created some somewhat elaborate Home Assistant automations to switch on only the rooms I need when I am working from home. Hopefully this should help me save some energy.

Cat Litter

In June, I wrote about my connected cat litter project, which I could use to track my cat’s health over time by automatically weighing her whenever she uses it. While getting it working at first was a little bit of a struggle – requiring me to film the litter tray to figure out how Ellie was using it that was causing issue – this has been incredibly reliable and a great success. I’m very happy with it.

A notification reading Ellie (3.65Kg) has left you a present in the litter box (20g)

Unfortunately, Ellie was a little ill early this year and lost a lost some weight. I’m pleased to say that she has made a full recovery now, and the smart litter was fantastic for tracking her recovery as she gained back a healthy weight.

Misc Smart Stuff

  • Automatic Blind – While renovating my bedroom, I added a very basic blackout blind, to stop the morning some from shining around the curtains and waking me up. In an Amazon sale I picked up an automated blind opener. I integrated this into Home Assistant, and I was really happy during the summer heatwave, that I could leave both the window and curtains open, for the best cooling, but have the blind shut itself just before sunrise.

  • The lights in both my bathroom and kitchen are both Ikea Tradfri GU10 spotlights. Initially I was pretty impressed with these as a cost effective solution to adding smart lights to rooms that require a lot of individual bulbs. However, during use, they’ve proven to be really fickle. I have one set connected to my Hue Bridge, and the other to a Zigbee card connected to my Home Assistant Pi. Both sets of lights exhibit odd behaviour where they will turn on really dull and then 30 seconds or so later, go to full brightness. This stopped for a while during summer, while they worked perfectly, but came back again – given they are installed in the roof space, I wonder if this is temperature related somehow?

  • Living in an older property, keeping an eye out for damp in cold weather is a way of life, I recently added a dehumidifier to keep a handle on the indoor humidity when cooking. To keep running costs down, I made use of the humidity & temperature sensors in each room to detect when it needs to be turned on and when it can be turned off again.

Looking Forward

I’ve got a few projects planned for 2023, some big and some small, but I’m going to keep them as a surprise for you. I also want to take a look at energy monitoring, possibly making use of the Home Assistant Glow project.

I hope you have a happy new year, and I’ll see you in 2023!

Internet of Poop: How (and Why) I Built a Smart Litter Tray

Naturally, we want our pets to be as healthy and happy as possible, and just as with humans, one valuable metric to know is their weight. Knowing the weight of our four-legged friends, not only helps us to verify that they have a healthy amount of body fat, but can also can be used to detect things early on that may need medical attention. As they cannot speak to us and tell us when don’t feel well, it is our duty to listen to all of the different signals we have to understand their wellbeing.

Photo of a black shorthair cat sitting.

That’s why I wanted to know the weight of my cat, Ellie. Unfortunately, she really dislikes being picked up or handled, even by people she trusts. This means, it’s not possible to weigh her on a bathroom scale, and the only datapoint I have is her yearly examination at the vets. 

I wanted to build something that would fit into her life to track her weight automatically, without any intervention. I decided to modify her litter box, so that on each visit it records her weight.

But WHY, Andy?

Okay I get it; you think it’s weird. So here are the main goals of the project: 

  • Track Ellie’s weight because I want to know how heavy she is without going to the vet
  • Learn something about how load cells work
  • Have fun building a new project
  • (Hopefully) Inspire others to try out new ideas and projects by sharing what I learned. 
  • Track the weight of poops because I thought that was funny. 

The Hardware

Rather than build the whole litter tray from scratch, I decided to build a platform that her existing litter tray would rest on. This platform would contain all the equipment necessary to detect when Ellie was using the litter and start taking measurements.

Continue reading

How I Made My Heating Smart Without Damaging Or Replacing Anything

I’ve previously mentioned that I wanted to upgrade my heating system so I could program it with more complex timings or control it form my phone. But there’s a catch: The house is rented, so the whole system must do no damage, be made only of removable parts and be installed without modifying any of the existing infrastructure.

In this post, I’ll talk about how I managed it, how it works and what the current state of the project is.

Background

My electric heating is controlled by a Timeguard RTS113 mechanical timer located awkwardly in a kitchen cupboard; it consists of a large outer ring that rotates once every 24 hours. On this ring, you push in red (on) or blue (off) plastic pegs (called tappets in the user manual) at the time you want the heating to turn on or off. As the peg passes a control spindle (representing the current time in the bottom right) it pushes it around approximately one eighth of a turn. Each eighth of a turn of the control spindle, toggles the heating on or off.

A second inner ring allows you to suppress the morning or afternoon schedule for a given day in the week. For example, you can have the heating come on at 6:00am and 7:00pm every day, except on Saturdays where it does not come on at 6:00am because the morning schedule is suppressed.

This works reasonably well, but it’s not very flexible – you pretty much a to live your life on the same schedule every day – if you deviate from it the heating is either wasting power while you’re out, or you’re freezing and have to reach into the cupboard to press the override button.

I’d love to have a smart thermostat such as Nest or Hive but they don’t support my electric heating and as this is a rental house, I’m not able to modify anything to support them.

What I Wanted To Do

The control spindle that is rotated by the pegs has a small slot on the top that can be turned manually using a screw driver to toggle the heating on an off. I can remove all of the pegs and use a stepper motor to very gently turn the spindle each time I want to change the heating state. I could then connect this to a controller that receives instructions from the internet, and write whatever software I wanted to run the schedule.

The Motor

Continue reading

New Project: Zero Damage Smart Heating in a Rental House

This is the first post in a series documenting my attempt to build a smart heating system for a rental house. Further posts will follow as I work on it.

I have electric heating in my house, powered by a central timer from the past. The timer is a masterpiece of engineering, but is incredibly crude by modern standards. I’d love a connected system such as Nest or Hive but these systems only support low voltage trigger systems found with most gas systems, not the high voltage switching I have.

So I want to build my own, It’ll be fun, educational and greatly improve my quality of life in the winter. There’s just one thing though: I don’t own the house, so whatever I do must be easily reverted / removed / undone. Also, I’m a software not an electrician so, in the name of safety, I am not re-wiring anything or changing how it currently works.

The Timer

The timer is a Timeguard RTS113, it supports switching the heating on or off once every 30 mins by inserting a red (on) or blue (off) tappet at the appropriate time. On an inner ring it supports suppressing this schedule for the morning or afternoon for any day in the week. For example, you can have the heating some on at 6:00am, and 7:00pm every day, except on Saturdays where it does not come on at 6am.

The tappets are attached to a rotating dial, which rotates once per 24 hours. Each tappet has a lug, that as it passes a control spindle, pushes it around an 8th of a turn. As the control spindle is rotated it toggles the heating on or off.

The Plan

The control spindle has a plastic screw slot on the top to help you see its current state when programming the timer. So, in theory, I can remove all of the tappets and turn the control spindle manually (and very gently) using a stepper motor each time I want to turn it on or off.

Proof of Concept

I picked up a suitable looking stepper motor and motor controller from The Pi Hut, and hot glued a washer to the end. By holding this in place I was able to turn the heating on an off by rotating the motor with an Arduino. Now to figure our a more permanent arrangement…

Next Steps

I’ve already used Tinkercad and made a driver head to fit over the motor shaft and engage with the timer’s control spindle (replacing the hot glue blob from the proof of concept), I’ll 3D print this and see how it goes. Then I need to design some kind of support to hold the motor in the correct place so I can let go of it.

The above gif was made using Paint 3D ❤️