This is the first post in a series documenting my attempt to build a smart heating system for a rental house. Further posts will follow as I work on it.

I have electric heating in my house, powered by a central timer from the past. The timer is a masterpiece of engineering, but is incredibly crude by modern standards. I’d love a connected system such as Nest or Hive but these systems only support low voltage trigger systems found with most gas systems, not the high voltage switching I have.

So I want to build my own, It’ll be fun, educational and greatly improve my quality of life in the winter. There’s just one thing though: I don’t own the house, so whatever I do must be easily reverted / removed / undone. Also, I’m a software not an electrician so, in the name of safety, I am not re-wiring anything or changing how it currently works.

The Timer

The timer is a Timeguard RTS113, it supports switching the heating on or off once every 30 mins by inserting a red (on) or blue (off) tappet at the appropriate time. On an inner ring it supports suppressing this schedule for the morning or afternoon for any day in the week. For example, you can have the heating some on at 6:00am, and 7:00pm every day, except on Saturdays where it does not come on at 6am.

The tappets are attached to a rotating dial, which rotates once per 24 hours. Each tappet has a lug, that as it passes a control spindle, pushes it around an 8th of a turn. As the control spindle is rotated it toggles the heating on or off.

The Plan

The control spindle has a plastic screw slot on the top to help you see its current state when programming the timer. So, in theory, I can remove all of the tappets and turn the control spindle manually (and very gently) using a stepper motor each time I want to turn it on or off.

Proof of Concept

I picked up a suitable looking stepper motor and motor controller from The Pi Hut, and hot glued a washer to the end. By holding this in place I was able to turn the heating on an off by rotating the motor with an Arduino. Now to figure our a more permanent arrangement…

Next Steps

I’ve already used Tinkercad and made a driver head to fit over the motor shaft and engage with the timer’s control spindle (replacing the hot glue blob from the proof of concept), I’ll 3D print this and see how it goes. Then I need to design some kind of support to hold the motor in the correct place so I can let go of it.

The above gif was made using Paint 3D ❤️